Homework \#3 of Topology II

Due Date: Feb 19, 2018

1. If $m<p$, show that every smooth map $M^{m} \rightarrow S^{p}$ is homotopic to a constant.
2. (a) Compute the degree of the antipodal map, $S^{k} \rightarrow S^{k}, x \rightarrow-x$.
(b)Prove that the antipodal map is homotopic to the identity if and only if k is odd.
(c) Show that there exists a nonvanishing vector field on S^{k} if and only if k is odd.
3. Suppose that $W \xrightarrow{\mathrm{~g}} X \xrightarrow{\mathrm{f}} Y$ is a sequence of smooth maps with $\operatorname{dim}(W)=$ $\operatorname{dim}(X)=\operatorname{dim}(Y)$. Prove that

$$
\operatorname{deg}(f \circ g)=\operatorname{deg}(f) \operatorname{deg}(g)
$$

4. Definition: Let X be a compact manifold, Z a closed smooth manifold of Y. Suppose X, Y, Z are boundaryless and suppose that $\operatorname{dim}(X)+$ $\operatorname{dim}(Z)=\operatorname{dim}(Y)$. Let $f: X \rightarrow Y$ be a smooth map transversing to Z. Define the mod 2 intersection number of f with Z to be the number of the points in $f^{-1}(Z) \bmod 2$, denoted by $I_{2}(f, Z)$.

Show that if two smooth map $f_{1}, f_{2}: X \rightarrow Y$ transversal to Z are homotopic, then $I_{2}\left(f_{1}, Z\right)=I_{2}\left(f_{2}, Z\right)$.
(Hint:you may need the following Extension Theorem: Let Z be a closed submanifold of Y, both boundaryless. Suppose W is a compact manifold and $C \subset W$ is closed subset. If $f: W \rightarrow Y$ is transversal to Z on C and ∂f is transversal to Z on $\partial W \cap C$, then there exists a smooth map g homotopic to f such that $g \mp Z$ and $\partial g 币 ~ Z$, and on a neighborhood of C we have $f=g$.).
5. Given disjoint manifolds $M, N \subset \mathbb{R}^{k+1}$, the linking map

$$
\lambda: M \times N \rightarrow S^{k}
$$

is defined by $\lambda(x, y)=(x-y) /\|x-y\|$. If M and N are compact, oriented and boundaryless, with total dimension $m+n=k$, then the degree λ is called the linking number $l(M, N)$. Prove that

$$
l(M, N)=(-1)^{(m+1)(n+1)} l(N, M) .
$$

If M is the boundary of an oriented manifold $X \subset \mathbb{R}^{k+1}$ disjoint from N, prove that $l(M, N)=0$.

Define the linking number of disjoint manifolds in the sphere S^{m+n+1}.
6. If $y \neq z$ are regular values for the smooth map $f: S^{2 p-1} \rightarrow S^{p}$, then the manifolds $f^{-1}(y)$ and $f^{-1}(z)$ can be naturally oriented, hence the linking number $l\left(f^{-1}(y), f^{-1}(z)\right)$ is defined.
(a) Show that the linking number is locally constant as a function of y.
(b) If y and z are regular values of g also, where

$$
\|f(x)-g(x)\|<\|y-z\|
$$

for all x, prove that

$$
l\left(f^{-1}(y), f^{-1}(z)\right)=l\left(g^{-1}(y), f^{-1}(z)\right)=l\left(g^{-1}(y), g^{-1}(z)\right)
$$

(Hint: Prove that $\|f(x)-g(x)\|<\|y-z\|$ implies that $g^{-1}(y)$ is disjoint from $f^{-1}(z)$ and the homotopy

$$
f_{t}(x)=\frac{t f(x)+(1-t) g(x)}{\|t f(x)+(1-t) g(x)\|}
$$

makes sense.
(c) Prove that $l\left(f^{-1}(y), f^{-1}(z)\right)$ depends only on the homotopy class of f, and does not depends on the choice of y and z.

